LUNCH & LEARN WEST AFRICA

11th May 2021, 12:00-12:45u

A lunchtime trip to Ghana, Mali and Burkina Faso

- 12:00-12:05 Music, welcome by Koen Maathuis & introductions
- 12:05-12:15 **Omedi Ochieng** What African Philosophy can teach you about the good life
- 12:15-12:20 Jaap Bos Ghana: nature-based solutions
- 12:20-12:25 Ruth Wijland & Thierno Sissoko Mali: drinking water connections & NRW
- 12:25-12:30 Marina Gaton Gonzalez Mali: wastewater management
- 12:30-12:35 Kevin Dipama Burkina Faso ECDD Project
- 12:35-12:40 Edith Tea Thesis presentation

12:40-12:45 Q&A

Nature based solutions in Ghana

Integrated Water Resources Management

전 DUTCH WATER AUTHORITIES

Nature Based Solutions & Water Resources Management

Examples of Nature based Solutions

- Restore and protect forests and wetlands in catchments → water availability
- Mangrove planting \rightarrow coastal protection
- Reforestation riverbanks \rightarrow less siltation basins
- Agroforestry → less evaporation
- Water harvesting \rightarrow overcoming dry season
- Sand motor (NL) \rightarrow coastal protection

Advantages

- Enhances sustainable water management
- Creates low skill and fast implementing jobs
- Fairly easy and quick to implement
- Appeals to donors (Payment for Ecosystem Services: trees, CO2)
- Suitable for pilots IWRM cooperation
- Visible results enhance Blue Deal

Nature based Solutions in Ghana

. Reforestation of Riverbanks – White Volta Basin - film

. Songor Lagoon Mangrove - Volta Delta (in preparation)

Drinking water in Mali

Water Operators' Partnership with SOMAGEP

Wastewater treatment in Mali

Water Operators' Partnership with ANGESEM

The people

The challenges

ECDD

Eau, CLE (comité local de l'eau) et development durable Water, Local water committee and sustainable development

World Waternet and SNV

MSc Hydrology

Remote sensing soil salinity

Modeling soil salinity using Remote sensing: The case of the Office du Niger

Edith Tea

Salinization High evapotranspiration Salts out evaporation Salts channel losses capillary • Insufficient rainfall rise • High evaporation • Insufficient drainage **DRY SEASON**

Modeling soil salinity using Remote sensing

Office du Niger

- More than 50% of Malian rice
- 82,000 hectares
- Rice as the dominant crop

Method

Modeling soil salinity using Remote sensing

Preliminary Results

Pearson Correlation Coefficient: 31 $r^2 = 0.08$

P value : 1.6808769187693266e-06 Linear Fit of Vegetation Index with Soil Data y=-0.00137x+0.39 0.5 NDVI November 2005 0.30 0.30 0.30 0.30 data 0.40 0.30 0.20 EM38 - V

Pearson Correlation Coefficient: 0.27 $r^2 = 0.07$ p value : 1.9050323406783462e-05

Pearson Correlation Coefficient: 0.35 $r^2 = 0.12$

Pearson Correlation Coefficient: 0.26 $r^2 = 0.06$ 3.551281309463064e-05

EM38 - V

Linear Fit of Vegetation Index with Soil Data

v=-0.00043x+0.35

p value : 7.955090673270977e-07

• r^2 below 60% : Insufficient for prediction

NDVI Dry Season (00)

0.32

0.30

0.28

0.26

0.24

- Best correlations:
 - 2000-2005 (delay in response)
 - November (driest month)

Conclusions & Next steps

- Knowledge & Innovation in use of remote sensing
- Analyze different regions:
 - do previous conclusions repeat?
- Writing, writing, writing!

THANK YOU!